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1. Introduction

The artificial compressibility method [1] is widely used mainly for solving the incompressible Navier–Stokes
equations by introducing derivatives of the primitive values of velocity (u,v,w) and pressure (p) with respect to
a pseudo-time variable s. This enables the coupling between the continuity and momentum equations thus
allowing time marching schemes developed for compressible flows to be used for incompressible flows in
the sense that the pseudo-transient solution is marched to a steady state with respect to s.

The present work is concerned with a variation of the schemes used in conjunction with the artificial compress-
ibility method known as the characteristics-based (CB) scheme, which was first introduced for solving two-
dimensional [2] and then three-dimensional flows [3] and developed further to incorporate multigrid techniques
[4]. It has since been used in many flow-modelling studies e.g. [8–13], served as a basis for expanding the method
for multi-species flows [5] and also for acceleration of the method for multigrid flow computations [7]. The CB
scheme though exhibited substantial delays in terms of convergence in certain studies [12,13]. This led to a thor-
ough investigation of the mathematical basis of the scheme in order to specify the cause of the aforementioned
inefficiency. As a result of this investigation, the purpose of this study is to clearly indicate the necessary revisions
in the construction of the scheme thus helping towards a solid mathematical establishment of the scheme.

2. Analysis

2.1. The characteristics based scheme

The characteristics based (CB) scheme is essentially an upwind scheme and is based on the formation of
compatibility equations in characteristic directions as in the method of Riemann by splitting the Euler equa-
tions into one-dimensional equations.
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2.1.1. 2D Version

The analysis of the method for two dimensions [2] begins by expressing the Euler equations in curvilinear
coordinates n = n(x,y), g = g(x,y) including the artificial compressibility term
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with J=xnyg � ynxg the Jacobian of the transformation and b the artificial compressibility parameter the value
of which plays an important role in determining the convergence rate. The Euler equations are then split into
one-dimensional equations
oJU
os
þ o~E

on
¼ 0 ð2Þ

oJU
os
þ o~F

og
¼ 0; ð3Þ
and the analysis is carried out for Eq. (2) whereas similar procedure is supposed for (3). The non-conservative
form of Eq. (2) is then given
1

b
ps þ unnx þ vnny ¼ 0 ð4aÞ

us þ unðunx þ vnyÞ þ uðunnx þ vnnyÞ þ pnnx ¼ 0 ð4bÞ
vs þ vnðunx þ vnyÞ þ vðunnx þ vnnyÞ þ pnny ¼ 0; ð4cÞ
where the Jacobian J in the pseudo-time derivatives in the corresponding equation in [2] should be neglected.
In Eq. (4) the space derivatives are calculated using the known data at time step n. The updated values of vec-
tor U at time step n + 1 can be defined by a linear Taylor series expansion around the previous time step
(Fig. 1). A backward series expansion can be such that the vector U is to be defined as a function of the Uj

value, which should lie between node i and an adjacent node (i � 1 or i + 1) in order to be inside the limits
of stable integration. Therefore
U ¼ U j þ U n � Dn0 þ U s � Ds ð5Þ

which is equal to
U s ¼
U � U j
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U
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Fig. 1. Schematic representation of the characteristics-based scheme.
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where Dn 0 is defined by the introduction of a wave speed _n such that
Dn0 ¼ _n � Ds ð7Þ

and subsequently the line with slope 1= _n is the characteristic. By considering dimensional analysis it can be
shown that _n has dimensions of inverse time and therefore it is not a physical speed. In order for a wave speed
with proper dimensions to be introduced, the wave speed k is defined by
_n ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

x þ n2
y

q
; ð8Þ
where the Jacobian J in the denominator of the corresponding equation in [2] should be neglected. A combi-
nation of Eqs. (6)–(8) yields
U s ¼
U � Uj

Ds
� U nk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
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y

q
: ð9Þ
Substituting Eq. (9) into Eq. (4) leads to
1

b
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pnkþ un~xþ vn~y ¼ 0 ð10aÞ

1

Ds
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

x þ n2
y

q ðu� ujÞ þ unðk0 � kÞ þ uðun~xþ vn~yÞ þ pn~x ¼ 0 ð10bÞ
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where
k ¼ u~xþ v~y; ~x ¼ nxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

x þ n2
y

q ; ~y ¼ nyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

x þ n2
y

q : ð11Þ
The spatial derivatives un, vn, pn, can be eliminated from Eq. (10) according to the following consideration.
Because at each time step the system of equations is zero, every one of the three equations can be multiplied by
an arbitrary coefficient for example, a, b, c, respectively, and after summation of the equations the resulting
equation will also be zero. This is similar to the method of Riemann, according to which the purpose is to
construct the solution in time following the characteristics corresponding to the values of k as seen below,
and along which the equations giving the value of the variable only as a function of the one at the previous
time step and on the corresponding characteristic apply:
1

Ds
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

x þ n2
y

q a
b
ðp � pjÞ þ bðu� ujÞ þ cðv� vjÞ

� �
þ pn �

a
b

kþ b~xþ c~y
� �

þ unða~xþ bðk0 � kþ u~xÞ þ cv~xÞ þ vnða~y þ bu~y þ cðk0 � kþ v~yÞÞ ¼ 0: ð12Þ
If the coefficients of the spatial derivatives are set to be zero then
a
b
ðp � pjÞ þ bðu� ujÞ þ cðv� vjÞ ¼ 0; ð13Þ
provided that
� a
b

kþ b~xþ c~y ¼ 0 ð14aÞ

a~xþ bðk0 � kþ u~xÞ þ cv~x ¼ 0 ð14bÞ
a~y þ bu~y þ cðk0 � kþ v~yÞ ¼ 0: ð14cÞ
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A non-trivial solution for the coefficients a, b, c exists for the following values of k, which are calculated when
setting the determinant of Eq. (14) equal to zero:
k0 ¼ u~xþ v~y ð15aÞ

k1 ¼ k0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0 þ b
q

ð15bÞ

k2 ¼ k0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0 þ b
q

: ð15cÞ
For k = k0 and from Eq. (14a) one obtains
a ¼ b~xþ c~y
k0

b: ð16Þ
Substitution of a into (13) yields
b½~xðp � p0Þ � k0ðu� u0Þ� þ c½~yðp � p0Þ � k0ðv� v0Þ� ¼ 0; ð17Þ

where the subscript ‘0’ denotes that this equation corresponds to k = k0. According to the method, Eq. (17)
must be satisfied regardless of the values b and c. Therefore the terms in brackets must be zero. Thus
ðu� u0Þ~y � ðv� v0Þ~x ¼ 0: ð18Þ

Similarly for k = k1, k2 the following equations are obtained:
ðp � p1Þ þ k1½~xðu� u1Þ þ ~yðv� v1Þ� ¼ 0 ð19Þ
ðp � p2Þ þ k2½~xðu� u2Þ þ ~yðv� v2Þ� ¼ 0: ð20Þ
The method presents Eqs. (18)–(20) as the compatibility equations, the solution of which gives the variables
u, v and p as functions of their characteristic variables uj, vj, pj with j = 0, 1, 2:
u ¼ ~xRþ ~yðu0~y � v0~xÞ ð21Þ
v ¼ ~yR� ~xðu0~y � v0~xÞ ð22Þ

p ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0 þ b
q ðk1k2 � k2k1Þ; ð23Þ
where
R ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0 þ b
q ððp1 � p2Þ þ ~xðk1u1 � k2u2Þ þ ~yðk1v1 � k2v2ÞÞ ð24aÞ

k1 ¼ p1 þ k1ðu1~xþ v1~yÞ ð24bÞ
k2 ¼ p2 þ k2ðu2~xþ v2~yÞ: ð24cÞ
Using the finite volume method, Eq. (2) can be discretised as
oðJUÞ
os
þ ~Eiþ1=2 � ~Ei�1=2 ¼ 0: ð25Þ
For the calculation of the inviscid flux ~E on the cell face of a control volume (Fig. 2) the values for pressure
and velocities from Eqs. (21)–(23) are used. The characteristic variables uj, vj, pj with j = 0, 1, 2 in (21)–(23) are
calculated by upwind differences from the left or the right side of the cell face according to the sign of kj.
ðU jÞiþ1=2 ¼
1

2
½ð1þ signðkjÞÞU�iþ1=2 þ ð1� signðkjÞÞUþiþ1=2�; ð26Þ
where (Uj) is the vector of the characteristic variables for each j = 0, 1, 2 and sign (kj) equals +1 or �1 for
positive or negative values of kj, respectively. The values of Uþiþ1=2 and U�iþ1=2 can be calculated by high order
interpolation formulas.



(i, j ) 

(i, j-1/2 ) 

(i, j+1/2 ) 

(i+1/2, j ) 
(i-1/2, j ) 

Fig. 2. A finite volume (i, j) with its cell faces.
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2.1.2. 3D version

For the version of the scheme for three dimensions [3,4] the process follows the same rationale as in the 2D
version splitting the Euler equation into one dimensional equations in the n, g and f directions and ultimately
yielding for the n direction
1

Ds
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

x þ n2
y þ n2

z

q a
b
ðp � pjÞ þ bðu� ujÞ þ cðv� vjÞ þ dðw� wjÞ

� �
þ pn �

a
b

kþ b~xþ c~y þ d ~w
� �

þ un a~xþ bðk0 � kþ u~xÞ þ cv~xþ dw~xð Þ þ vn a~y þ bu~y þ cðk0 � kþ v~yÞ þ dw~yð Þ
þ wn a~zþ bu~zþ cv~zþ dðk0 � kþ w~zÞð Þ ¼ 0: ð27Þ
similar to (12) and where the Jacobian J appearing in the corresponding equation in [3] should be neglected. If
the coefficients of the spatial derivatives are set to be zero then
a
b
ðp � pjÞ þ bðu� ujÞ þ cðv� vjÞ þ dðw� wjÞ ¼ 0; ð28Þ
provided that
� a
b

kþ b~xþ c~y þ d~z ¼ 0 ð29aÞ

a~xþ bðk0 � kþ u~xÞ þ cv~xþ dw~x ¼ 0 ð29bÞ
a~y þ bu~y þ cðk0 � kþ v~yÞ þ dw~y ¼ 0 ð29cÞ
a~zþ bu~zþ cv~zþ dðk0 � kþ w~zÞ ¼ 0; ð29dÞ
where k0 ¼ u~xþ v~y þ w~z. A non-trivial solution for the coefficients a, b, c, d exists for the following values of k:
k0 ¼ u~xþ v~y þ w~z ð30aÞ

k1 ¼ k0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0 þ b
q

ð30bÞ

k2 ¼ k0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0 þ b
q

: ð30cÞ
According to the method the compatibility equations for k = k0 resulting from (28) are
ðw� w0Þ~x� ðu� u0Þ~z ¼ 0; ð31aÞ
ðv� v0Þ~x� ðu� u0Þ~y ¼ 0: ð31bÞ
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For k = k1 and k = k2 the compatibility equations are
ðp � p1Þ þ k1½~xðu� u1Þ þ ~yðv� v1Þ þ ~zðw� w1Þ� ¼ 0 ð32Þ
ðp � p2Þ þ k2½~xðu� u2Þ þ ~yðv� v2Þ þ ~zðw� w2Þ� ¼ 0 ð33Þ
respectively. From the solution of the aforementioned equations the velocity components are defined:
u ¼ ~xRþ u0ð~y2 þ ~z2Þ � v0~x~y � w0~x~z ð34aÞ
v ¼ ~yRþ v0ð~x2 þ ~z2Þ � w0~z~y � u0~x~y ð34bÞ
w ¼ ~zRþ w0ð~y2 þ ~x2Þ � v0~z~y � u0~x~z; ð34cÞ
where
R ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0 þ b
q ððp1 � p2Þ þ ~xðk1u1 � k2u2Þ þ ~yðk1v1 � k2v2Þ þ ~zðk1w1 � k2w2ÞÞ: ð35Þ
Eq. (25) is again used for discretising the 1D equation in the n direction resulted from the splitting of the
Euler equations. For the calculation of the inviscid flux the values of variables u, v, w, p are calculated
from Eqs. (32), (33), (34) whereas the characteristic variables uj, vj, wj, pj with j = 0, 1, 2 in (34) and
(35) are calculated by upwind differences from the left or the right side of the cell face according to
the sign of kj by using (26).

2.2. Revision of the CB scheme

The mathematical inconsistencies within the scheme are spotted in the derivation of the compatibility equa-
tions for k = k0 in both the 2D and 3D versions of the method.

2.2.1. 2D version

If (16) is substituted into (14b) then
b ¼ �c
b~y þ k0v
b~xþ k0u

: ð36Þ
Substituting (36) into (16) yields
a ¼ �cb
u~y � v~x
b~xþ k0u

: ð37Þ
Then substituting (36) and (37) into (13) yields
ðp � p0Þðu~y � v~xÞ � ðu� u0Þðb~y þ k0vÞ þ ðv� v0Þðb~xþ k0uÞ ¼ 0; ð38Þ

which is the compatibility equation for k = k0.

However, in [2], Eq. (18) is reported as the compatibility equation for k = k0 due to the following assump-
tion: it is argued that (17) must be satisfied regardless of the values of b and c. This cannot be true since b and c

are related as in (36), which is a condition in order for (13) to be true. In other words, there is only one degree
of freedom, i.e. if an arbitrary value of c is chosen then a and b should satisfy (36) and (37), respectively, for
(13) to be true.

For k = k1 and k = k2, the compatibility equations are (19) and (20), respectively, and are obtained follow-
ing a procedure similarly as for the derivation of (38) and not (18). Therefore, it is (38) and not (18) that
together with (19) and (20) are the compatibility equations, the solution of which gives the primitive values
p, u and v as functions of their characteristic values. Consequently, the values of p, u and v given in Eqs.
(21)–(23) of the method are meaningless.

2.2.2. 3D version

For a non-trivial solution of Eq. (29), the determinant of the system should be zero, yielding the values of k
as in (30), where k = k0 is a double root. Substitution of k = k0 in (29a) yields
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a ¼ b
k0

ðb~xþ c~y þ d~zÞ; ð39Þ
whereas Eqs. (29b)–(29d) are reduced to
a ¼ �ðbuþ cvþ dwÞ: ð40Þ

This implies two degrees of freedom i.e. two linearly independent vectors L, where L = [a,b,c,d]T, can be ob-
tained as non-trivial solutions of (39) and (40). All other solutions would stem from a linear combination of
these two vectors. For the derivation of the first vector L1 one can set c = q and d = 0. Substitution of these
values into (39) and (40) and rearranging yields
b ¼ �q
b~y þ k0v
b~xþ k0u

; ð41Þ

a ¼ �qb
u~y � v~x
b~xþ k0u

: ð42Þ
Substituting these relations into (28) yields
ðp � p0Þðu~y � v~xÞ � ðu� u0Þðb~y þ k0vÞ þ ðv� v0Þðb~xþ k0uÞ ¼ 0; ð43Þ

which is the same as (38). Eq. (43) is the first compatibility equation corresponding to k = k0. For the deriva-
tion of the second vector L2 one can set c = 0 and d = q. Substitution of these values into (39) and (40) and
rearranging yields
b ¼ �q
b~zþ k0w
b~xþ k0u

; ð44Þ

a ¼ �qb
u~z� w~x
b~xþ k0u

: ð45Þ
Substituting these relations into (28) yields
ðp � p0Þðu~z� w~xÞ � ðu� u0Þðb~zþ k0wÞ þ ðw� w0Þðb~xþ k0uÞ ¼ 0: ð46Þ

Eq. (46) is the second compatibility equation corresponding to k = k0.

However in the description of the method [3,4], Eqs. (31a) and (31b) are reported as the compatibility equa-
tions for k = k0. This outcome also appears in the derivation of the scheme in [5] referred to therein as trans-
port formulation. In a more detailed description of the derivation of the scheme [6], it appears that this
outcome is based on a similar argument as in the 2D version, namely that when (39) is substituted into
(28) the resulting equation is satisfied regardless of the values of the coefficients b, c and d thus yielding
Eq. (31). However this cannot be true because, as also explained in the revision of the 2D version, the coef-
ficients b, c and d are related as in (40) for (28) to be true. For k = k1 and k = k2, the compatibility equations
are (32) and (33), respectively, and are obtained following a procedure similarly as for the derivation of (43)
and (46) and not (31).

Therefore, it is (43) and (46) and not (31) that together with (32) and (33) are the compatibility equations,
the solution of which gives the primitive values p, u, v and w as functions of their characteristic values. Con-
sequently and similarly as for the 2D version, the values of u, v and w given in Eq. (34) of the method are
meaningless.

2.2.3. Interpolation formula

For the calculation of characteristic values from (26) for both the 2D and the 3D versions of the scheme the
following upwind interpolation formulas are used for approximating the term U on the cell face i + 1/2
(Fig. 3)
U�iþ1=2 ¼
1

6
ð5Ui � U i�1 þ 2Uiþ1Þ ð47aÞ

Uþiþ1=2 ¼
1

6
ð5Uiþ1 � Uiþ2 þ 2U iÞ ð47bÞ
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Fig. 3. Topology of a one-dimensional uniform grid.
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depending on the side of upwinding. This interpolation formula is reported in the presentation of the CB
scheme as of third order of accuracy for the term U on i + 1/2 [2–5]. However, Eq. (47), referred to also as
the CUI scheme [14] are not third but only second order accurate for the term U on i + 1/2 (see Appendix).
They give a third order accurate approximation when used in the term (Ui+1/2 � Ui�1/2)/Dx or otherwise the
discretised derivative oU/ox at the cell centre i (or oU/oy, oU/oz accordingly) either as:
oU
ox
¼

Uþiþ1=2 � Uþi�1=2

Dx
ð48aÞ
or
oU
ox
¼

U�iþ1=2 � U�i�1=2

Dx
ð48bÞ
depending on the side of upwinding. This is what the conclusion from the analysis in the Appendix of [5]
should actually be and not that (47) are a 3rd order interpolation formula.

Finally, due the fact that they are derived assuming a uniform grid (see Appendix), (47) are not the opti-
mum choice for interpolation formulas when the CB scheme is used in applications employing non-uniform
or/and curvilinear grids as in [6,7,9,12,13].

3. Conclusions

The necessary revisions in the mathematical basis of the characteristics-based scheme for incompressible
flows were presented. These revisions concern the compatibility equations and consequently the calculation
of the primitive variables within the iterative process of the scheme for both the 2D and 3D versions. Since
the iterative process is directly related to the convergence rate, the lacking of the scheme in terms of conver-
gence compared to the hybrid/conservative schemes as reported in [5] may be explained together with the con-
vergence delays encountered in the use of the scheme in several studies [12,13].

Finally, the interpolation formula approximating the values of the characteristic variables on the cell faces
is used repeatedly in the method as of third order of accuracy whereas it is only of second order. If third order
of accuracy for a three point interpolation formula for a variable on a cell face is needed, then the QUICK
scheme [15] should be used (see also Appendix) in the latter form or, when required, in the form for non-uni-
form grids [16].

Appendix

A general form of an interpolation formula for the value of u at a cell face is:
uiþ1=2 ¼
XkR

k¼�kL

bkuiþk þ T:E: with T:E: ¼
X1
m¼n

cmDxm o
mu

oxm
; ðA:1Þ
where T.E. is the truncation error, kL and kR are two non-negative integers, bk and cm are real numbers
and Dx is the distance between two adjacent grid nodes when uniform grid is assumed (Fig. 3). Similarly,
a general form of an interpolation formula for the value of ou/ox at the cell face i + 1/2 is similar to (A.1)
and is
ou
ox

� �
iþ1=2

¼
PkR

k¼�kL
bkuiþk

l � Dx
þ T:E: with T:E: ¼

X1
m¼n

cmDxm o
mþ1u

oxmþ1
; ðA:2Þ
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where l is an integer. The exponent n of Dx in the leading term of T.E. defines the order of accuracy of the
formula in both (A.1) and (A.2).

For deriving interpolation formulas for the value of u at the cell face i + 1/2 (Fig. 3), ui+1/2 can be written
in the following right upwind-biased form
uþiþ1=2 ¼ aui þ buiþ1 þ cuiþ2 ðA:3Þ
Expanding the values of u at the RHS around xi+1/2 yields
ðuþiþ1=2Þ
D ¼ a uiþ1=2 �

Dx
2

� �
� ou

ox

� �
iþ1=2

þ 1

2!

Dx
2

� �2

� o
2u

ox2

� �
iþ1=2

� 1

3!

Dx
2

� �3

� o
3u

ox3

� �
iþ1=2

þ . . .

" #

þ b uiþ1=2 þ
Dx
2

� �
� ou

ox

� �
iþ1=2

þ 1

2!

Dx
2

� �2

� o
2u

ox2

� �
iþ1=2

þ 1

3!

Dx
2

� �3

� o
3u

ox3

� �
iþ1=2

þ . . .

" #

þ c uiþ1=2 þ
3Dx

2

� �
� ou

ox

� �
iþ1=2

þ 1

2!

3Dx
2

� �2

� o
2u

ox2

� �
iþ1=2

þ 1

3!

3Dx
2

� �3

� o
3u

ox3

� �
iþ1=2

þ . . .

" #

ðA:4Þ

and therefore
ðuþiþ1=2Þ
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where superscript D denotes interpolated term so as to distinguish from the exact term in the RHS.

For deriving a second order interpolation formula for ui+1/2 in (A.3), the term containing Dx in (A.5)
should vanish thus
aþ bþ c ¼ 1;

b� aþ 3c ¼ 0:
The above system has one degree of freedom therefore the values of one of the unknowns can be chosen
arbitrarily, leading to variety of 2nd order interpolation formulas, one of which is (47b) when c = �1/6.
A third order interpolation formula of ui+1/2 in (A.3) is derived when the aforementioned system containing
an additional equation from eliminating the term containing Dx2 in (A.5) is solved leading to the QUICK
[15] scheme.
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